Model Airplane Flight School Mercer County Radio Control Society And Mercer County Library System

C. David Vale, Director

Copyright © 2008 by the Mercer County Radio Control Society, All Rights Reserved

Model Airplane Flight School Course Presenters

Ric deBastos

Seth Hunter

David Vale

Model Airplane Flight School

Topic 1 – Airplanes and Flight

Copyright © 2008 by the Mercer County Radio Control Society, All Rights Reserved

Airplanes! Airplanes! They Come In Many Sizes

They Come In Many Shapes

All Have Common Elements

- One or more wings to provide lift
- A way to produce motion through the air and airflow over the wings
- A method to control orientation in three axes

Parts of an Airplane

Lift

- Wing and tail produce lift required to balance weight
- Wings change direction of airflow, producing lift, drag, and downwash

Wings Provide Lift When Air Flows Across Their Surfaces

Airfoil Types and Terminology

- Flat bottom Has good trainer flight characteristics, prefers to fly upright
- Semi-symmetrical Sport aerobatics, can fly inverted
- Fully symmetrical Extreme aerobatics, flies inverted as easily as upright
- Under-cambered Vintage airplanes, difficult to build

Drag

- Drag is a downside of creating lift You can't have lift without it.
- Engine thrust overcomes drag.
- Drag can be reduced by streamlining
 - Wheel pants
 - Cowling around engine
 - Smooth surface
 - No supporting struts, wires, etc.
 - Good flying technique reduces drag too

All surfaces produce drag as air flows over them.
Streamlining and smooth shapes reduce drag.

Thrust

- Thrust is needed to balance weight and drag
- It also influences rate of climb
- The pilot controls thrust with throttle

Thrust

A power source is needed to cause forward motion.
Gravity works as a power source too!

Wing Shapes and Sizes

- Wing span is length of wing, wing-tip to wing-tip
- Wings can have different shapes looking down (planform)
 - Straight common on trainers
 - Tapered common on aerobatic
 - Thin and long ("high aspect ratio") common on gliders.
 - Elliptical some racers and fighters
- Wings can be mounted in different positions:
 - High wing very stable; common on trainers
 - Low wing less stable; common on aerobatic planes
 - Shoulder wing in between!

Wing Shapes

Straight for stability and lift

Elliptical for uniform lift across wing

Tapered for high-performance aerobatics

Long for low-speed, low drag

Wing Locations

High for stability and visibility

Low for ease of access and structural design

Mid for lower drag, but hard to design

Gull for lower drag, shorter gear

Wing Locations (Cont.)

Or several places if:
 You want lots of lift,
 Lots of drag, and

- You like to build wings.

Definition of Aerodynamics

- "Aero" means AIR
- "Dynamics" means the effect of forces on an object's motion
- Aerodynamics is the study of the effect of air, and the forces it produces, on the motion of objects.

Forces on an Airplane

GROUND HORIZON

Thrust overcomes drag, lift overcomes weight

Axes and Flight Controls

Using Lift to turn

Weight is Balanced by Lift

Climbing: More thrust to balance Descending: Less thrust needed because of forward pull of weight rearward pull of weight **GROUND HORIZON GROUND HORIZON**

It swings back when you climb ... you need more power!

It swings forward when you descend ... you throttle-back!

Changing Speed

- Pilot controls "angle of attack" which determines airspeed.
- Whether the airplane ascends or descends depends on thrust (throttle).

Aerodynamic Stall

A stall doesn't mean that the engine quits

 A stall is a loss of lift caused by too great an angle of attack

Above a critical angle of attack, a full stall occurs

Slow Flight

- 4. Pilot adds power
 - Plane stops descending
 - Balance regained at higher angle of attack
 - Slower airspeed

Flight Maneuvers

- Straight and level flight
 - Maintains constant altitude with moderate power
 - A wide speed range possible
 - Rudder (yaw) or crab (heading offset) can compensate for wind drift
 - Straight and level flight is one of the hardest maneuvers to do well!

Climb

- Used for increasing altitude
- It is important to avoid an aerodynamic stall
- A higher power setting will compensate for weight pulling back
- Descend
 - Used for decreasing altitude
 - A lower power setting will compensate for weight pulling forward

• Turn

- Wings are tipped to the side
- Lift angle shifts away from vertical
- Increased angle of attack produces more lift to keep weight balanced
- Increased power compensates for increased drag
- It is important to avoid an "accelerated stall"

Key Terms to Remember

- Lift
- Drag
- Thrust
- Weight
- Rudder
- Elevator
- Aileron
- Throttle
- Wing
- Stabilizer

- Fuselage
- Aerodynamic stall
- Pitch
- Roll
- Yaw
- Bank
- Airfoil
- Planform
- Empennage